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Abstract: Debris-flows are infrequent geomorphic phenomena that shape steep valleys and can repre-
sent a severe hazard for human settlements and infrastructure. In this study, a debris-flow event chro-
nology has been derived at the regional scale within the Gesäuse National Park (Styria, Austria) using 
dendrogeomorphic techniques. Sediment sources and deposition areas were mapped by combined 
field investigation and aerial photography using an Unmanned Aerial Vehicle (UAV). Through the 
analysis of 384 trees, a total of 47 debris-flows occurring in 19 years between AD 1903 and 2008 
were identified in five adjacent gullies. Our results highlight the local variability of debris-flow activi-
ty as a result of local thunderstorms and the variable availability of sediment sources. 
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1. INTRODUCTION 

Torrential processes like debris-flows and debris 
floods are highly concentrated mixtures of sediment and 
water in steep channels which occur when a critical com-
bination of sediment, inclination and water is reached. In 
the Alps these flows are commonly triggered by intense 
rainstorms of short duration and high intensities or long-
lasting precipitation, often in connection with snowmelt 
(Brunetti et al., 2010). Information on long-term torren-
tial activity is only rarely available. Apart from archival 
data, dendrogeomorphology has often been used to derive 
temporal and spatial information of previous debris-flow 
activity (Alestalo, 1971; Strunk, 1992; Baumann and 
Kaiser, 1999; Jakob, 2010; Šilhán, 2012; Tumajer and 

Treml, 2013; Stoffel and Corona, 2014). Hereby investi-
gations of growth failures in year rings of trees affected 
by debris-flows, allowing deduction of information on 
past events (Hupp, 1984; Strunk, 1991) is combined with 
information on the spatial distribution of the affected 
trees to estimate deposition areas of past debris-flows 
(Bollschweiler and Stoffel, 2007; Stoffel et al., 2008). 
Dendrogeomorphology was repeatedly used to recon-
struct event magnitudes of (flash) floods based on the 
analysis of peak flow scars (e.g. Gottesfeld and 
Gottesfeld, 1990; Ballesteros et al., 2011). Jakob and 
Bovis (1996) or Stoffel (2010) assessed the frequency by 
dendrochronological records and magnitudes by a combi-
nation of data from field surveys of deposition material 
and empirical methods. So far only a limited number of 
studies has focused on the dendrogeomorphic reconstruc-
tion of debris-flows at the regional scale (e.g. Boll-
schweiler and Stoffel, 2010; Pelfini and Santilli, 2008; 
Procter et al., 2012).  
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Geomorphic analysis of the surface through field in-
vestigations and areal pictures provide additional infor-
mation on the flow and depositional behavior of hydro-
geomorphic processes. Geomorphic mapping through 
aerial pictures of an unmanned aerial vehicle (UAV) is a 
relatively new method of surface analysis. In the context 
of detecting previous landslide processes, only scarce 
literature is available (e.g. Hugenholtz et al., 2013; 
Stumpf et al., 2013). 

The aim of the study is to investigate debris-flow ac-
tivity in these steep, adjacent channels and to obtain an as 
complete as possible time series of events over the last 
century. The results are interpreted in connection with 
sediment sources available in the upper part of the catch-
ment which was assessed by aerial photography by using 
an UAV and field work.  

2. STUDY SITE 

We investigated the forested fans of five neighboring 
gullies located in the Gesäuse National Park, Styria 
(47°35'N, 14°38'E) opposite of Gstatterboden. All gullies 
are episodic channels. The steep, north facing catchments 
cover an area of >1 km2 per gully and extend from 
2117 m a.s.l. at the summit of Planspitze to ~570 m a.s.l. 
at the confluence with the Enns river (Fig. 1). All catch-
ments are dominated by Triassic limestone (Dachstein-
kalk) and dolomites. The sediment delivered to the fans is 
angular and has a mean grain size of 84 mm using the 
surface sampling method. Based on levees observed at 
fan apex, tongue-shaped deposition patterns with unsort-
ed material, the absence of any signs of snow avalanches, 
mean travel angles ranging from 69 to 74% as well as 
Melton numbers ranging from 1.7 to 2.0 (Melton, 1965), 

we conclude that debris-flows are the only process in 
these channels. Below the steep north face of the 
Planspitze summit (>50°), relevant snow accumulation 
zones are clearly absent and reports of snow avalanches 
do not exist in archives. A summary of geomorphic pa-
rameters for each catchment is given in Table 1. The 
regional climate is characterized by humid temperate, 
oceanic conditions, prevailing westerly winds and frontal 
systems from the Atlantic. Mean annual precipitation at 
Gstatterboden varies between 1000 and 1700 mm, with a 
mean of 1347 mm for the period 1971–2008 (Hydro-
graphic service Austria, 2013), which is located approxi-
mately 500 m from the study site. The forest stand grow-
ing on the fans is dominated by Norway spruce (Picea 
abies (L.) Karst.) and European larch (Larix decidua 
Mill.). At the contact of the fan with the alluvial belt of 
the Enns River, vegetation is characterized by a spruce-
fir-beech mixed forest stand. Archival records report only 
a few debris-flows and for several years back to 1900; 
however, no exact locations are reported except for one 
event in 2005 at the Planspitzgraben, located between 
torrents 2 and 3. This gully is deeply incised and trees are 
not available for dendrogeomorphic analyses, hence the 
Planspitzgraben was not included in our reconstructed 
event history. 

3. METHODS 

Geomorphic mapping  
Fieldwork started with a detailed mapping (scale 

1:1000) of geomorphic features relating to past debris-
flows. As a result of the steep slopes and the dense forest 
cover, mapping was not possible using a Global Position-
ing System (GPS) and was therefore performed with a 
compass, inclinometer and tape measure.  

Field investigations in the transit zone were carried 
out by climbing all channels as far as possible, mapping 
sediment sources and by estimating yield rates for sedi-
ment entrainment in the channels using the method sug-
gested by Hungr et al. (1984). A detailed ground-based 
survey was not possible in the initiation zones due to the 
steepness of the terrain, so that an UAV (View Copter 
V6) had to be used there. The UAV used in this study is a 
battery-powered octocopter equipped with a digital photo 
camera (16 Mpix resolution) which can be rotated re-

 
Fig. 1. The source areas (grey dotted lines) as well as the deposition 
areas (in red) of the five investigated torrents in the Gesäuse catch-
ment (source aerial photo: GIS-Steiermark, 2013). 

 

Table 1. Altitude of the maximum runout on the fans, catchment area, 
Melton number, fan and travel inclination of the torrents where dendro-
geomorphic analysis were performed. 

Torrent Fan alti-
tude (m) 

Catchment 
(km2) 

Melton  
Nb. (-) 

Mean fan  
slope (%) 

Mean travel 
angle (%) 

1 570 0.6 2.0 16 69 
2 590 0.7 1.7 20 72 
3 570 0.3 2.0 18 74 
4 600 0.4 1.8 27 76 
5 600 0.4 1.7 17 70 
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motely in 3 dimensions. Areal pictures were taken from 
this unmanned drone to estimate sediment availability as 
well as the structure of the gully system. 

Tree-ring analysis and dating of torrential events 
Based on the geomorphic map and an inspection of 

their morphology, trees obviously influenced by past 
torrential activity were identified and sampled with an 
increment borer. Field work was performed in spring 
2011 during which at least two samples were taken per 
tree (see Stoffel and Bollschweiler (2008) for details on 
the sampling strategy). In addition, a limited number of 
trees were felled and cross-sections taken. The position of 
each sampled trees was determined on the geomorphic 
map. In total, 754 samples (370 increment cores, 14 cross-
sections) were selected from 384 trees at the five cones.  

Samples were then prepared and analyzed following 
the standard dendrogeomorphic procedures as described in 
Stoffel and Bollschweiler (2008, 2009). Individual work-
ing steps included drying and sanding of the samples, 
counting of tree rings and measuring ring widths. Subse-
quently, growth curves were cross-dated with local refer-
ence chronologies to correct faulty tree-ring series from 
disturbed samples and to separate natural variability (e.g., 
climate, insect breaks or damage caused by forest work) 
from growth disturbances (GD) induced by torrential pro-
cesses (Stoffel et al., 2010; Stoffel and Wilford, 2012). A 
reference chronology was built from 20 trees (2 cores per 
tree) growing within the study area but obviously not in-
fluenced by geomorphic processes. The samples from the 
reference trees were averaged and standardized. The result-
ing mean curves of the reference chronology were then 
compared with growth curves of disturbed trees to detect 
false or missing tree rings (Schweingruber, 1996).  

Within this study, the analysis of growth disturbances 
focused primarily on the presence of (i) tangential rows 
of traumatic resin ducts (TRD) as a sign of mechanical 
impacts (Bollschweiler et al., 2008; Stoffel et al., 2008; 
Schneuwly et al., 2009a, 2009b), (ii) compression wood 
reflecting unilateral pressure and tilting of stems (Ko-
gelnig-Mayer et al., 2011; Lopez-Saez et al., 2012), (iii) 
sudden growth suppression following decapitation, loss 
of branch material, exposure of roots or deposition of 
material at the stem base (Stoffel et al., 2012; Kogelnig-
Mayer et al., 2013), and (iv) the presence of growth re-
leases in tree-ring records caused by stem burial (Strunk, 
1997; Mayer et al., 2010). 

The dating of past events was based on the number of 
trees showing a growth disturbance within the same year, 
the intensity of the tree-ring signal and the position of the 
disturbed trees, following the approach initially proposed 
by Shroder et al. (1978) and adapted by Kogelnig-Mayer 
et al. (2011) and Schneuwly-Bollschweiler et al. (2013). 

4. RESULTS 

Age structure and growth disturbances of the sampled 
trees 

The oldest tree sampled showed 131 growth rings 
(AD 1879) at sampling height, whereas 12 increment 
rings were counted in the youngest tree. The age structure 
of the trees sampled at the cones range between 60 and  
85 yrs. Comparable young trees were identified on the 
second fan (~60 yrs), whereas the oldest trees can be 
found on the fan of the fourth gully (~84 yrs). The distri-
bution of tree ages on the different cones is represented in 
50 yr classes in Fig. 2. 

 
Fig. 2. Position and age of sampled trees on the deposition area. Ages are in classes of 50 yr (source aerial photo: National Park Gesäuse GmbH). 
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From the 384 trees sampled at study sites, 366 
showed clear signs of GD and allowed identification of 
3164 GD (Table 2). Signs of past torrential activity were 
predominantly present in the form of growth suppressions 
(GS), tangential rows of traumatic resin ducts (TRD), 
growth releases (GR) and/or compression wood (CW). 
Three-fourth of the GD identified are GS and GR, where-
as TRD only accounted for 20% and CW for 4%. The 
quantitative occurrence of the GD in the gullies is given 
in Fig. 3. Geomorphic conditions as well as the intra-
annual position of TRD indicate debris-flows as the dom-
inating process in the catchment.  

Dendrogeomorphic dating of torrential events 
The simultaneous occurrence of GD in several trees 

on the fans was then used to reconstruct debris-flow 
chronologies in the area. According to the tree-ring rec-
ords, debris-flows occurred in 19 years between 1903 and 
2008 (Table 3). A total of 18 events was documented for 
channel 4 (AD 1903–2008), whereas only 3 debris-flows 
were reconstructed in channel 3. In 14 years debris-flows 
could be observed in more than one channel, but the only 

year with debris-flow occurrence in all gullies was 2006. 
The reconstructed regional time series of debris-flows is 
shown in Fig. 4. Events represented with bold lines are 

Table 2. Growth disturbances (GD) determined in the 382 P. abies and 
L. decidua trees sampled in five adjacent gullies in the Gesäuse Na-
tional Park. TRD = tangential rows of traumatic resin ducts. 

Growth disturbances No % 

Growth suppression (GS) 1369 43 
Growth release (GR) 1034 33 
TRD 623 20 
Compression wood (CW) 138 4 
 

 

 
Fig. 3. Relative distribution of growth disturbances in the five catch-
ments. CW = compression wood, GR = growth release, GS = growth 
suppression and TRD = tangential rows of traumatic resin ducts. 

 

Table 3. Events dated with dendrogeomorphic records on the fans of the 
five gullies. Legend:  events dated with high certainty where a high 
amount of trees were available; ~ events dated with less certainty (possi-
ble events) based on less trees available for dendrogeomorphic analysis. 

Event year 1 2 3 4 5 
1903    

 
 1906    

 
 1909    

 
 1917 ~   ~  1927 ~     1943    

 
 1947    

  
1950   

   1955      1978 ~ ~  ~  1980   
 

  
1983  ~  

  
1990      
1992      1996   ~  ~ 
2000   

 
 

 2005      2006      
2008  

  
  

Events 10 9 3 18 7 
Return period 9.4 6.8 7.0 6.0 9.1 

 

 

 
Fig. 4. Reconstructed debris-flow frequency at Gesäuse National Park. 
Solid lines represent torrential events reconstructed with a large num-
ber of GD in trees spread homogenously over the fan. Dashed lines 
indicate events where the quantity and/or quality of GD were less 
abundant for which a spatial delimitation of events was not possible. 
The grey area indicates the number of trees available for reconstruc-
tion (i.e. sample size). 
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based on a very large number of GD and a large fraction 
of trees were available for analysis. By contrast, dashed 
lines refer to torrential activity for which tree-ring records 
were less readily available due to the limited age of the 
trees sampled or where a small number of reacting trees 
and/or weak intensity GD did not allow for a reconstruc-
tion of events with equal confidence. The number of 
increment cores available for analysis is shown by the 
grey, dashed line. The average return period of debris-
flows varies between 6 years in channel 4 and 9.4 years 
in the channel 2. 

Geomorphic evidence 
Field investigations and pictures from an unmanned 

aerial vehicle (UAV) reveal that single point sources 
(such as landslide-type initiation zones) do not exist for 
debris-flow initiation in the five gullies under investiga-
tion. Fig. 5A gives an overview of the source areas of 
gullies 1 and 2 as well as of the Planspitzgraben torrent. 
The gullies are characterized by a few reaches with lateral 
sediment sources (probably Quaternary moraine deposits; 
Fig. 5B) as well as dense networks of linear sediment 
sources in the gullies (Fig. 5C). Estimated sediment vol-
umes stored in the different gullies are in the order of 
several hundreds to several thousands of m3 each. Aver-
age deposition heights of individual debris-flow deposits 
on the fans have been estimated between 0.4 and 1.0 m. 

5. DISCUSSION 

Event reconstruction 
The analysis of 384 P. abies and L. decidua trees al-

lowed identification of 3164 growth disturbances (GD) 
and thereby the identification of 19 years with debris-
flow activity at Gesäuse National Park between AD 1903 
and 2008. The reconstruction of debris-flows was based 
primarily on growth suppressions (GS = 43%) and 
growth releases (GR = 33%), but much less frequently 
with compression wood (CW = 4%) following stem tilt-
ing or the presence of tangential rows of traumatic resin 
ducts (TRD = 20%) after wounding. The scarcity of 
wound-related tissues and the abundance of GS and GR 
are somewhat unusual for debris-flows (Stoffel, 2008; 
Stoffel and Corona, 2014), but reflective of the nature of 
the sediment (i.e. clast size, lithology). Calcareous mate-
rial has been described in the past to lead to GS in case of 
massive stem burial as a result of limited water, nutrient 
and oxygen supply (Kogelnig-Mayer et al., 2013). In case 
of light stem burial, sedimentation may also lead to a GR 
in case that the delivered material is rich in nutrients 
which may fertilize the soil layers surrounding the tree 
(Mayer et al., 2010). 

In his work in calcareous environments, Strunk 
(1997) reported limitations in dating accuracy in case 
events were defined with CW, GS and GR alone, as these 
GD may appear with some delay (up to three years) after 
the occurrence of a debris-flow in the growth rings of 
trees (Stoffel et al., 2010; Kogelnig-Mayer et al., 2011). 
The inclusion of TRD considerably helps in this respect 
as resin is produced in the days following impact and as 
ducts are being formed in the weeks after the event, thus 
allowing dating of debris-flows with annual and some-
times seasonal accuracy. The position of TRD within the 
tree rings provides indications on whether the causative 
process of damage was snow avalanches or debris-flows 
(Stoffel et al., 2006; Szymczak et al., 2010). In this study, 
TRD represent 20% of all GD, which adds considerable 
confidence to the chronology of dated event. Further 
independent evidence for the accuracy of the reconstruct-
ed time series is provided by the “Planspitzgraben”, lo-
cated between gullies 2 and 3. Local authorities as well as 
the Austrian Torrent and Avalanche Control report a 
series of past events in this gully (the last one in 2005) 
which are in good agreement with the results of our 
study.  

Debris-flow activity 
With the exception of the events in 2006, debris-flow 

activity was mostly limited to only one or a few gullies, 
but was not recorded in all systems at the same time. We 
also observe substantially higher activity in gullies 1 and 
4 as compared to the other gullies. Differences in activity 
are not so much due to different source area conditions 
(i.e. sediment availability, catchment size, etc.), but re-

 
Fig. 5. Sediment sources of the Planspitze north face as ob-
served from an UAV. (A) View of the source areas of gullies 1 
and 2 as well as Planspitzgraben. Point sources (B) as well as 
complex structures of the small gullies will ultimately (C) provide 
material for debris-flows (areal pictures by UAV). 
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flective of the larger number of old trees present for anal-
ysis. Fig. 4 illustrates that fan 2 hosts the smallest number 
of old trees for dendrogeomorphic analysis as compared 
to fans 1 and 4. During the first half of the 20th century, 
only gully 4 shows clear signals of debris-flow activity. 
In case that the time window of analysis is restricted to 
AD 1950–2010, we identify 12 (out of 19) years with 
debris-flows, and the number of years with flows in only 
one gully can be limited to two (Fig. 4), whereas in most 
other years three out of five channels produced debris-
flows. Provided that this study is limited to the past 60 
years, results become fairly comparable with the regional, 
dendrogeomorphic studies of Pelfini and Santilli (2008) 
in Valle del Gallo (Italy) and of Bollschweiler and Stoffel 
(2010) in the Zermatt Valley (Switzerland). 

Local debris-flow processes at Gesäuse National Park 
are considered as the result of extreme weather condi-
tions. In our study, distances between individual torrents 
vary from 0.3 to 1 km. Inclination and mean relief energy 
are very similar for all channels, so that differences in 
channel activity can be assigned to the local variability of 
rainfall and/or to varying sediment availability (i.e. dispo-
sition for debris-flow initiation).  

The meteorological station Gstatterboden is located 
less than 1 km from the gullies and records daily precipi-
tation since 1971 (Hydrographic Service Austria, 2013). 
Despite the fact that the station is unusually close to the 
study sites, even more so when compared with the set-
tings of previous work in the field, we are aware of the 
limitations inherent to the temporal resolution and limited 
spatial information, and of the effects that these might 
have on a reliable identification of conditions leading to 
the release of debris-flows. However, this limitation is 
quite typical for the estimation of rainfall thresholds for 
mass-wasting processes (Guzzetti et al., 2008), and even 
more so in mountainous environments (Schneuwly-
Bollschweiler and Stoffel, 2012). Besides possible limita-
tions in the completeness of dendrogeomorphic time 
series (Stoffel et al., 2013) and the inability of meteoro-
logical records in valleys to record small-scale rainfall 
events in mountains, sediment availability possibly repre-
sents another reason for varying channel activity.  

6. CONCLUSION 

In this study, dendrogeomorphic techniques were ap-
plied to reconstruct a regional chronology of debris-flows 
in the Gesäuse National Park. Tree-ring records revealed 
47 debris-flow events in five adjacent gullies over the last 
110 years. Field investigations and the use of an un-
manned aerial vehicle (UAV) allowed detection of sedi-
ment sources which mainly originate from recent weath-
ering, thereby allow restricting event magnitudes to be in 
the order of 1000–10,000 m3. 

The coupling of different methods and the inclusion 
of UAVs in field-based research has been shown here to 
be a powerful tool for the documentation of debris-flow 

systems and for the monitoring of inaccessible areas 
where sediment transfers play a critical role. A detailed 
investigation of the source areas (constant areal pictures 
and DEMs derived from permanent analysis of UAVs) 
would also be an asset to check sediment availabil-
ity/transport. 
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